

PostgreSQL Performance
The basics

Joshua D. Drake

jd@commandprompt.com
Command Prompt, Inc.

United States PostgreSQL
Software in the Public Interest

The dumb simple

RAID 1 or 10 (RAID 5 is for chumps)
Lots of memory. It's cheap, get 4G (minimum)
At least two cores (PostgreSQL is process based)
If SATA consider twice as many disks
Always get a BBU
Split Transaction Logs and data.
Use autovacuum (or pay emergency rates)

RAID 1

Redundancy through
use of mirror
Increased performance
(sometimes) through
shared or partitioned
reads

RAID 1 + 0

Minimum 4 Spindles
Increased performance
through use of stripe
Increased reliability
through use of mirror

Lots of memory

PostgreSQL is efficient and it is possible to run
effectively in as little as 256Mb of memory.

Memory is cheap, most data sets are less than
4Gb. If you have at least 4Gb your active data set

can remain in file and or shared_buffer cache.

SATA

SATA is great. It is cheap. It is reliable. Just make
sure you have a BBU (because of large caches)

and you use twice as many spindles.

BBU

Battery Backup Unit
Used on good RAID cards in case of power

outage or sudden crash. Allows for storage of
pending writes until the machine comes back on
line. A requirement if you are running any kind of

CACHE on the RAID or Drives.

Two or More

PostgreSQL is processed based. The more cores
you have, the better concurrency you will get.

Splitting Transaction Logs

Ext3 (Ordered)

Ext3 (Writeback)

Ext2

0 20000 40000 60000 80000 100000 120000

Kb/s

Autovacuum defaults

#autovacuum = on
#autovacuum_max_workers = 3
#autovacuum_naptime = 1min
#autovacuum_vacuum_scale_factor = 0.2
#autovacuum_analyze_scale_factor = 0.1

Memory

shared_buffers
work_mem
maintenance_work_mem
effective_cache_size

What are shared_buffers

The working cache of all hot tuples (and Index
entries) within PostgreSQL.

shared_buffers

Pre-allocated cache (buffers).
On Linux sysctl.conf – kernel.shmmax
Use 20% of available memory (up to 40%)
Watch out for IO Storms

What is work_mem

The working memory available for work
operations (sorts) before PostgreSQL will swap.

work_mem

Don't set globally (postgresql.conf)
Use per transaction
Can be bad, per query, per connection, per sort
Use EXPLAIN ANALYZE to see if you are
overflowing

Example EXPLAIN ANALYZE

 QUERY PLAN

--
 Sort (cost=0.02..0.03 rows=1 width=0) (actual time=2270.744..2588.341
rows=1000000 loops=1)
 Sort Key: (generate_series(1, 1000000))
 Sort Method: external merge Disk: 13696kB
 -> Result (cost=0.00..0.01 rows=1 width=0) (actual
time=0.006..144.720 rows=1000000 loops=1)
 Total runtime: 3009.218 ms
(5 rows)

What is maintenance_work_mem

The amount of memory (RAM) allowed for
maintenance tasks before PostgreSQL swaps.
Typical tasks are ANALYZE, VACUUM, CREATE
INDEX, REINDEX

maintenance_work_mem

Set to a reasonable amount for autovacuum
Use SET for per session changes such as
CREATE INDEX

SET maintenance_work_mem to '1GB';
CREATE INDEX foo ON bar(baz);
RESET maintenance_work_mem;

What is effective_cache_size

A pointer for the PostgreSQL planner to hint at
how much of the database will be cached. This is

not an allocation setting.

effective_cache_size

Take into account shared_buffers
 total used free shared buffers cached
Mem: 6126208 3168356 2957852 0 480884 1258304

% of cached + shared_buffers = effective_cache_size

% depends on workload. Generally between 40%
and 70%

Let's talk IO

log_checkpoints
checkpoint_timeout
checkpoint_completion_target
checkpoint_segments
wal_sync_method
synchronous_commit

log_checkpoints

By default this is off. Turn on to correlate between
checkpoints and spikes in %IOWait from sar.

checkpoint_timeout

The amount of time PostgreSQL will wait before it
forces a checkpoint. Properly configured it
reduces IO utilization. Set to 15 or 20 (minutes). It
is affected by:

checkpoint_segments
checkpoint_completion_target

checkpoint_completion_target

This paramater is used to reduce spikes in IO by
completing a checkpoint over a period of time.

Do not change this paramater, increase
checkpoint_timeout instead.

checkpoint_segments

The number of transaction logs that will be utilized
before a checkpoint is forced. Each segment is 16
Mb. The default is 3. Use checkpoint_warning to
see if you need more.

Change to at least 10.

Use checkpoint_warning and logging
to get accurate setting.

wal_sync_method

The type of fsync that will be called to flush file
modifications to disk. Leave commented to have
PostgreSQL figure it out. On Linux it should look
like:

postgres=# show wal_sync_method ;
 wal_sync_method

 fdatasync

synchronous_commit

Specifies whether transaction commit will wait for
WAL records to be written to disk before the
command returns a "success" indication to the
client.

Depends on application. Turn off for faster
commits. Low risk of lost commits (but not
integrity).

Let's talk brains

default_statistics_target
seq_page_cost
random_page_cost (to fix)
cpu_operator_cost
cpu_tuple_cost

default_statistics_target

An arbitrary value used to determine the volume
of statistics collected on a relation. The larger the
value the longer analyze takes but generally the

better the plan. Can be set per column.

default_statistics_target

set default_statistics_target to 100;
pggraph_2_2=# analyze verbose pggraph_indexrollup;
INFO: analyzing "aweber_shoggoth.pggraph_indexrollup"
INFO: "pggraph_indexrollup": scanned 30000 of 1448084
pages, containing 1355449 live rows and 0 dead rows; 30000 rows in
sample, 65426800 estimated total rows
ANALYZE

default_statistics_target

set default_statistics_target to 300;
pggraph_2_2=# analyze verbose pggraph_indexrollup;
INFO: analyzing "aweber_shoggoth.pggraph_indexrollup"
INFO: "pggraph_indexrollup": scanned 90000 of 1448084
pages, containing 4066431 live rows and 137 dead rows; 90000 rows in
sample, 65428152 estimated total rows
ANALYZE
pggraph_2_2=#

default_statistics_target

How do I know to increase it?

Unique (cost=264.65..282.65 rows=100 width=2) (actual time=8.665..12.460
rows=100 loops=1)
 -> Sort (cost=264.65..273.65 rows=3600 width=2) (actual
time=8.664..10.423 rows=3600 loops=1)
 Sort Key: one
 Sort Method: quicksort Memory: 265kB
 -> Seq Scan on bar
(cost=0.00..52.00 rows=52 width=2) (actual time=0.007..1.894 rows=3600
loops=1)
 Total runtime: 12.553 ms

seq_page_cost

Tells the planner how expensive a sequential
scan is. It directly relates to random_page_cost.

random_page_cost

Tells the planner the expense of fetching a
random page. If using RAID 10, the value should

be inverted with seq_page_cost (1.0 vs 4.0)

Increasing per column

ALTER TABLE foo
 ALTER COLUMN BAR
 SET STATISTICS 120

cpu_operator_cost

Sets the planner's estimate of the cost of
processing each operator or function executed
during a query. The default is 0.0025.

In real world tests, a setting of 0.5 generally
provides a better plan. Test using SET in a
session.

SET cpu_operator_cost TO 0.5;
EXPLAIN ANALYZE SELECT ...

cpu_tuple_cost

Sets the planner's estimate of the cost of
processing each row during a query. The default
is 0.01.

In real world tests, a setting of 0.5 generally
provides a better plan. Test using SET in a
session.

SET cpu_tuple_cost TO 0.5;
EXPLAIN ANALYZE SELECT ...

Design

Connection Pooling
Prepared Statements
Functions
Batch Commits

Connection Pooling

Reduces CPU utilization

Keeps relations hot (in cache)

pgbouncer:
https://developer.skype.com/SkypeGarage/DbProjects/PgBouncer

Prepared Statements

Reduces planning time
Good for recurring and similar transactions
Start: 01:43:08 PM
 Insert 1000000 rows 1000 at a time
End: 01:43:18 PM – Time: 10 seconds

Start: 01:45:16 PM
 Insert 1000000 prepared rows 1000 at a time
End: 01:45:23 PM – Time: 7 seconds

Functions
● Reduces processing overhead

– Multiple round trips
– Manipulating data inside instead of outside
– Make sure to test and increase cost as required

Functions - execution_cost

A positive number giving the estimated execution
cost for the function, in units of
cpu_operator_cost. If the function returns a set,
this is the cost per returned row. If the cost is
not specified, 1 unit is assumed for C-language
and internal functions, and 100 units for
functions in all other languages. Larger values
cause the planner to try to avoid evaluating the
function more often than necessary.
result_rows

Functions - SET

The SET clause causes the specified configuration
parameter to be set to the specified value when
the function is entered, and then restored to its
prior value when the function exits. SET FROM
CURRENT saves the session's current value of the
parameter as the value to be applied when the
function is entered.

Functions - ROWS

A positive number giving the estimated number of
rows that the planner should expect the function
to return. This is only allowed when the function
is declared to return a set. The default
assumption is 1000 rows.

CREATE FUNCTION

CREATE OR REPLACE FUNCTION RETURN_LOTS(INT) RETURNS SETOF INT AS
$$
 SELECT generate_series(1,$1);
$$
 COST 0.5 ROWS 10000000 SET work_mem TO '5MB'

LANGUAGE 'SQL';

Batch Commits

Reduces commit costs
Increases commit efficiency
Start: 01:45:56 PM
 Insert 1000000 rows 1000 at a time
End: 01:46:05 PM – Total: 9 seconds

Start: 01:46:05 PM
 Insert 1000000 rows one at a time
End: 01:48:07 PM – Total: 00:2:02

Questions?

Technical?
Community?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

